1,053 research outputs found

    Single spin asymmetry measurements for π0\pi^0 inclusive productions in p+p↑→π0+Xp+p_{\uparrow} \to \pi^0 + X and \pi^-+\p_{\uparrow}\to \pi^0+X reactions at 70 and 40 GeV respectively

    Full text link
    The inclusive π0\pi^0 asymmetries were measured in reactions p+p↑→π0+Xp+p\uparrow \to \pi^0+X and π−+p↑→π0+X\pi^-+p\uparrow \to \pi^0+X at 70 and 40 GeV/c respectively. The measurements were made at the central region (for the first reaction) and asymmetry is compatible with zero in the entire measured pTp_T region. For the second reaction the asymmetry is zero for small xFx_F region (−0.4<xF<−0.1,0.5<pT(GeV/c)<1.5-0.4<x_F<-0.1, 0.5<p_T(GeV/c) <1.5) and increases with growth of ∣xF∣\mid x_F\mid. Averaged over the interval −0.8<xF<−0.4,1<pT(GeV/c)<2-0.8<x_F<-0.4, 1<p_T(GeV/c)<2 the asymmetry was −(13.8±3.8)-(13.8\pm 3.8)%.Comment: 4 pages, 2 figures; Presented at SPIN-2004 at Trieste, October 10-16,200

    First study of radiation hardness of lead tungstate crystals at low temperatures

    Get PDF
    The electromagnetic calorimeter of PANDA at the FAIR facility will rely on an operation of lead tungstate (PWO) scintillation crystals at temperatures near -25 deg.C to provide sufficient resolution for photons in the energy range from 8 GeV down to 10 MeV. Radiation hardness of PWO crystals was studied at the IHEP (Protvino) irradiation facility in the temperature range from room temperature down to -25 deg.C. These studies have indicated a significantly different behaviour in the time evolution of the damaging processes well below room temperature. Different signal loss levels at the same dose rate, but at different temperatures were observed. The effect of a deep suppression of the crystal recovery process at temperatures below 0 deg.C has been seen.Comment: 10 pages 7 figure

    Performance of novel CaO-based sorbents in high temperature CO2 capture under RF heating

    Get PDF
    The problem of CO₂ mitigation on a small and medium scale can be resolved by developing a combined system of CO₂ capture and its consecutive conversion into valuable products. The first stage of CO₂ looping, however, should be reliable, effective and easy to control and radiofrequency heating, as a new advanced technology, can be used to improve the process. CO₂ absorption and desorption RF units can be installed within power plants and powered during the periods of low energy demand thus stabilizing the electrical grid. In this work, a CaO sorbent produced by template synthesis was studied as a sorbent for a CO₂ looping system under RF heating which offers short start-up times, highly controlled operation, high degree of robustness and low price. The sorbent reached its stable CO₂ capacity of 15.4 wt.% already after 10 temperature cycles (650/850 °C) under RF heating. Higher CO₂ desorption rate and lower degree of the sorbent sintering was observed under RF heating as compared to conventional heating
    • …
    corecore